Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events: 1. At-site modeling
نویسندگان
چکیده
منابع مشابه
Modeling and prediction of time-series of monthly copper prices
One of the main tasks to analyze and design a mining system is predicting the behavior exhibited by prices in the future. In this paper, the applications of different prediction methods are evaluated in econometrics and financial management fields, such as ARIMA, TGARCH, and stochastic differential equations, for the time-series of monthly copper prices. Moreover, the performance of these metho...
متن کاملGyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کاملEmpirical Modeling of Extreme Events from Return{Volume Time Series in Stock Market
We propose the discretization of real-valued nancial time series into few ordinal values and use non-linear likelihood modeling for sparse Markov chains within the framework of generalized linear models for categorical time series. We analyze daily return and volume data and estimate the probability structure of the process of extreme lower, extreme upper and the complementary usual events. Kno...
متن کاملTime Series Modeling of Coronavirus (COVID-19) Spread in Iran
Various types of Coronaviruses are enveloped RNA viruses from the Corona-viridae family and part of the Coronavirinae subfamily. This family of viruses affects neurological, gastrointestinal, hepatic, and respiratory systems. Recently, a new memb-er of this family, named Covid-19, is moving around the world. The expansion of Covid-19 carries many risks, and its control requires strict planning ...
متن کاملComputational Intelligence Methods for Financial Time Series Modeling
In this paper, the combination of unsupervised clustering algorithms with feedforward neural networks in exchange rate time series forecasting is studied. Unsupervised clustering algorithms have the desirable property of deciding on the number of partitions required to accurately segment the input space during the clustering process, thus relieving the user from making this ad hoc choice. Combi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Water Resources Research
سال: 1997
ISSN: 0043-1397
DOI: 10.1029/96wr03848